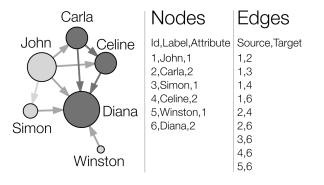
GEPHI – Introduction to network analysis and visualization

GRANDJEAN, Martin (2015) « GEPHI – Introduction to network analysis and visualization », <u>http://www.martingrandjean.ch/gephi-introduction</u>

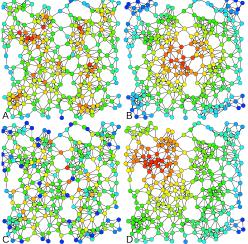

15 minutes video tutorial : <u>https://www.youtube.com/watch?v=FLiv3xnEepw</u>

Network Analysis and visualization appears to be an interesting tool to give the researcher the ability to see its data from a new angle. Because Gephi is an easy access and powerful network analysis tool, we propose a tutorial designed to allow everyone to make his first experiments on two complementary datasets.

After a short introduction about the basis of SNA and some examples which shows the potential of this tool and gives some inspiration, this tutorial is divided into 2 main "exercices": a geographical network of 1000 individuals sending letters all over Europe and a 2-mode network of 100 members of 10 different institutions.

1. INTRODUCTION

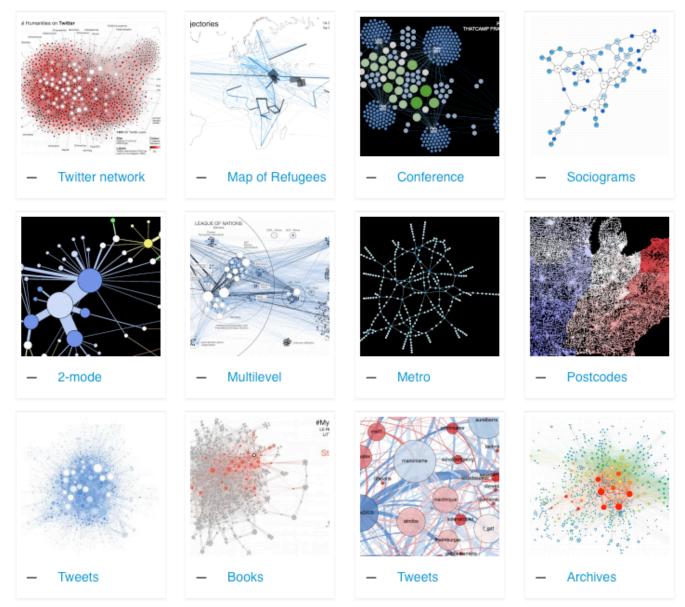
1.1 A short introduction to Social Network Analysis


A network is made of two components : a list of the actors composing the network, and a list of the relations (the interactions between actors). As part of a mathematical object, actors will then be called vertices (nodes, in Gephi), and relations will be denoted as tiles (edges, in Gephi).

4 types of centrality measures Here left, a very

simple

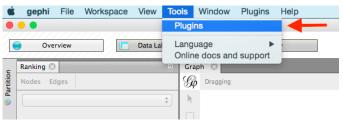
undirected social graph, with both lists explicited. Two attributes are attached to the nodes : a label (his or her "name") and a numeric attribute (here, a distinction between boys and girls). In the edge list, "Source" and "Target" entries refer to the nodes' identifiers (Id).


In our example, the attribute determines the color of the nodes. The size of a node depends on the value of its "degree centrality" (its number of connexions). The centrality measures are essential metrics to analyze the position of an actor in a network. They come in many variations, as shown at right (A = Degree centrality, number of В connexions

= Closeness centrality, closeness to the entire network ; C = Betweenness centrality, bridges nodes ; D = Eigenvector centrality, connexion to well-connected nodes, picture by Claudio Rocchini, Wikimedia).

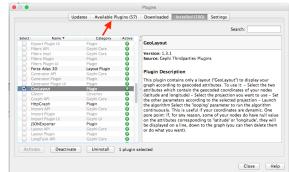
1.2 GEPHI visualizations: some hand-made examples

This is by testing that we learn. Examples of what is possible to do may help to conceptualize our own networks (see <u>www.martingrandjean.ch/gephi-introduction</u> for links to these examples).



2. SET UP 2.1 Downloading and installing the software

The software can be freely downloaded on www.gephi.org.


▲ Gephi is working on a previous version of Java. On an Apple computer running a recent version of OS X (10.7 Lion and further), to be able to run Gephi, you'll have to download and install a previous version of Java (Java 6 instead of your Java 7 or 8), find it here. Some compatibility problems may also occur with some Microsoft configurations. You'll find more ressources about this issue on Gephi forums / Gephi Facebook group / other websites.

2.2 A few plugins

Tools menu. Refresh the list and select the requested plugins. You'll have to restart Gephi shortly after the download (plugins appear only after a restart).

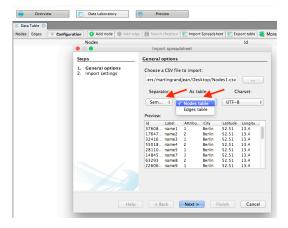
In order to go beyond the basic functionalities of the software, we will work with three additional plugins: GeoLayout, NoverlapLayout and Multimode Networks Transformation. You'll find the plugins in the

2.3 About the datasets

We will use two datasets (different data to explore different features). Download them from www.martingrandjean.ch/gephi-

introduction.

Depending on your browser, you may have to "save as" the files on your desktop.

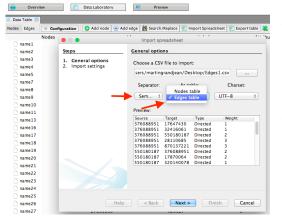

			\diamond	A	В	C	D
\diamond	A	В		Source	Target	Туре	Weight
1	Id	Label	2	376088951	17647430	Directed	1
2	376088951	name1	3	376088951	32416061	Directed	1
3	17647430	name2	4	376088951	550180187	Directed	2
4	32416061	name3	5	376088951	28110685	Directed	3
5	550180187	name4	6	376088951	870137221	Directed	3
6	28110685	name5	7	550180187	376088951	Directed	2
7	14845783	name7	8	550180187	17870064	Directed	2
8	63293	name8	9	550180187	320140078	Directed	1
9	22606966	name9	10	550180187	4308031	Directed	1
10	193763394	name10	11	550180187	34881762	Directed	1
11	191004748	name11	12	550180187	17150632	Directed	2
12	61502712	name13	13	550180187	34621309	Directed	3
13	2230301	name16	14	550180187	57601933	Directed	3
14	17870064	name17	15	550180187	277980462	Directed	2
15	123516974	name18	16	550180187	133671478	Directed	3
16	10161492	name19	17	550180187	65947781	Directed	3
17	16856080	name20	18	28110685	376088951	Directed	3
18	94154580	name21	19	28110685	14845783	Directed	1
19	20059362		20	28110685	63293	Directed	2
20	20646457	name23	21	28110685	109562464	Directed	3
21	109562464	name24	22	28110685	320140078	Directed	1

3. PART 1: MAPPING LETTERS OVER EUROPE

3.1 Importing the data into GEPHI

Run the software on your computer and create a "new project" in the start window. In the Data Laboratory, click on "Import Spreadsheet" to open the import window and import your first file.

Nodes 1



Specify that the separation between your columns is expressed by a semicolon and do not forget to inform Gephi that the file you import is containing nodes. Then press "next" and fill the import settings form as The "import proposed. settings" step is verv important: Gephi will

recognize some of the columns because of their header, but you'll always have to check that the software will be able to understand the nature of your data. In our example, be sure to inform Gephi that our latitudes and longitudes are a "double" variable (not an "integer").

Edges 1

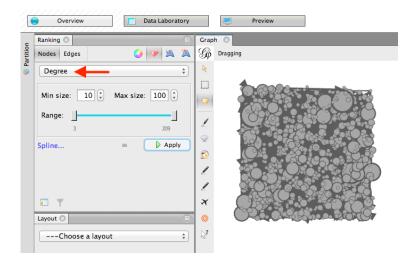
Follow the same procedure, but

but with the "edges" file downloaded before and fill the forms in the following manner: specify the semicolon and inform that Gephi vou're importing the edges. Fill in the last fields and uncheck "create missing nodes", because you've already imported them.

If no 'Type' column is p	ned if d 'Tar provid	
Imported columns:		
Source		
String	Å. T	
✓ Target		
String	A T	
🗹 Type		
String	A T	
🗹 Weight		
Float	Å.	
Create missing not	des	
mport settings		

Import settings

New columns are created with the specified type. A generated id is assigned if missing. Unless the option 'Force nodes to be created as new


Imported columns:
\$
☑ Label
String \$
☑ Attribute1
Integer 🗘
City
String 🗘
☑ Latitude
Double 🗘
✓ Longitude
Double 🗘
Source nodes to be created as new ones

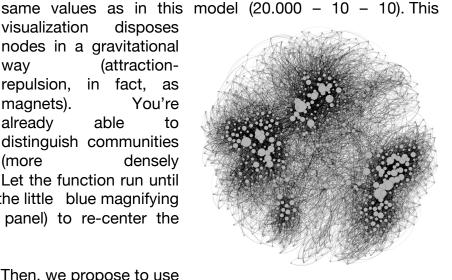
3.2 One-mode graph visualization

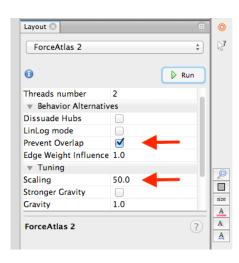
The action now takes place on the Overview panel. The software produces an overview of the graph, spatialized randomly and completely unreadable.

Nodes' size

Let's give nodes a size proportional to their degree (number of connexions). In the Ranking panel of the left column (top), select "Nodes" and the "red diamond", then select "Degree" in

the rolling menu and enter the minimal and maximal value (we propose 10-100). You'll see that the distribution of degree within your corpus is between 3 and 209: at least one node is connected to more than 200 others (and the least connected node is connected to 3 of them). Be aware that if you want a visually correct result, you'll have to use the "Spline" blue link to edit the shape of the spline: linearly double the radius of a node is more than double the area because of the power function.

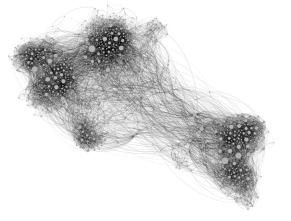

Spatialization


That's the main part! Let's begin with a spatialization that gives more space to the graph, but

Fruchterman	Reingold	Ŧ
0		🕨 Run
▼ Fruchterma	n Reingold	
Area	20000.0	────
Gravity	10.0	
Speed	10.0	

visualization disposes nodes in a gravitational (attractionway repulsion, in fact. as magnets). You're already able to distinguish communities (more denselv

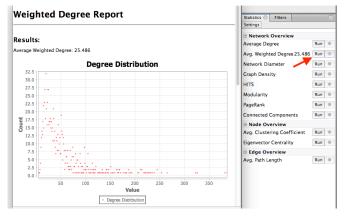
connected parts of the network). Let the function run until the graph is stabilized. Use the little blue magnifying glass (bottom left of the graph panel) to re-center the zoom.

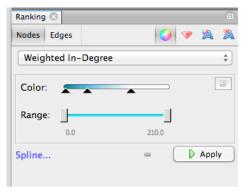

Then, we propose to use

the Force Atlas 2 (another layout algorithm) to disperse groups and give space around larger nodes. Be careful, the parameters you enter significantly alter the final appearance (proposition: Check "prevent overlap" and change "Scaling"

maintain it in a decided area: Fruchterman Reingold, with the

to 50). Let the function run until the graph is mostlv stabilized. We can apply Force Atlas 2 directly without applying Fruchterman Reingold before. but the as "random layout" from

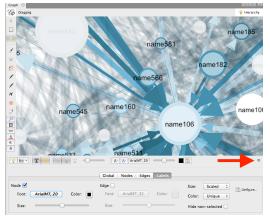

the begining is a ... random layout, it's better to untangle the network before sumitting it to a strong force-algorithm.


3.3 Final rendering and centrality measures

Weighted Degree

Let's add some more information to our graph by giving the nodes new attributes, influencing their color. In the Data laboratory, select the Edges Table, and sort them according to their wheight. Some edges have a wheight of 3, some 2 and some 1. That means that we have to take these differences into account by calculating the weighted degree of the nodes. You also observe that this graph is directed: the edges have a source and a target, a direction shown by a little arrow on the Overview display. So, the degree

we'll have to calculate has to distinguish the in- and out- connexions. In the Statistics panel, click on "Average Weighted Degree" to calculate these values for every nodes. You get a report showing the distribution of theses measures.

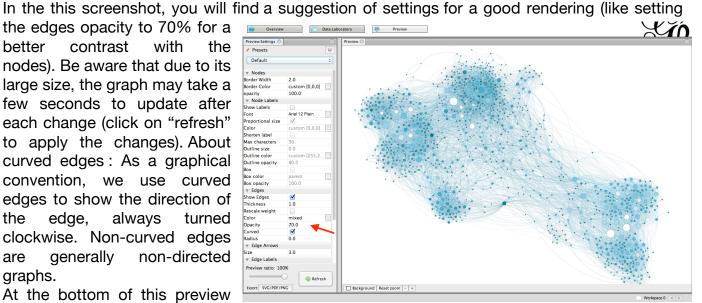


Now that theses values are calculated, new attributes are available in the ranking panel. Select the "color" icon, and chose "weighted in-degree" to color nodes according to the number of incoming edges. Little visual tip : use a dark color for small values and a light color for the highly connected nodes, in order to make the little nodes visible on the final graph (the well connected nodes are generally more visible). Result: the biggest nodes (=with a high degree) are not always those with the biggest weighted in-degree : if we consider an edge like a letter written between 2 people,

those who are writing a lot are not necessary those who are receiving a lot. It's interesting to give different attributes to nodes size and color, to compare them. Of course, you can export this data to conduct a full statistical analysis, scatter plots, etc. (the measures you make are automatically added to your nodes table). Note that if you used the "spline" to adjust nodes'size before, this setting is still used by default here and should be modified (without interfering with you previous choice for the size).

Nodes' label

We will come back to these measures and extra features after, but let's try to finalize our artwork for now by giving a label to the nodes. At the bottom right of the graph display, you'll find a little sign which allows you to developp a new panel. In label, choose "nodes" to add their labels to your nodes and set their font, color and size. If needed, for example if your data don't have any "Label" column, click on "configure" to


set the column content you want to get displayed (the "ID" may be used as a label, i.e.).

Finalizing the graph

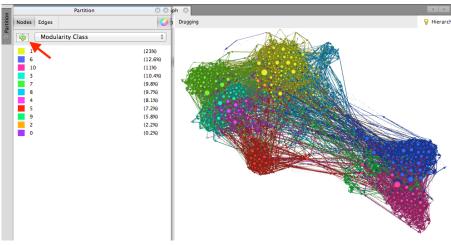
Go to "Preview" for trimming the final details. Unlike during previous stages, changing settings in this menu is reversible, and do not affect the structure of the graph.

the edges opacity to 70% for a better contrast with the nodes). Be aware that due to its large size, the graph may take a few seconds to update after each change (click on "refresh" to apply the changes). About curved edges: As a graphical convention, we use curved edges to show the direction of always the edge. turned clockwise. Non-curved edges are generally non-directed graphs.

At the bottom of this preview

column, you find an export link. Note that exporting in .png produces figure with a poor resolution. You may want to opt for .svg or .pdf, which have the advantage of being modifiable by your own image/drawing software (I recommend the open source program inkscape for manipulating .svg files).

Modularity

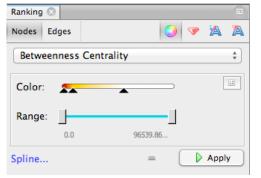

	Modularity settings		Statistics 📀 Filters			
Modularity			Settings			
Community detec	tion algorithm.		Network Overview			
			Average Degree		Run	۲
🗹 Randomize	Produce a better decomposition but	increases computation time	Avg. Weighted Degree 25.	486	Run	0
🗹 Use weights	Use edge weight		Network Diameter		Run	0
			Graph Density		Run	0
Resolution:	Lower to get more communities (smaller ones) and higher than 1.0 to get less communities (bigger ones).		HITS		Run	0
0.5			Modularity 0.	567	Run	0
			PageRank		Run	0
		Cancel OK	Connected Components		Run	0
			The Market Organization			

The visualization is only one step, network analysis often needs other mathematical means to provide the researcher with a satisfactory result. Feel free to explore the "Statistics" menu, for example by playing with dearee measures, density, path length, modularity.

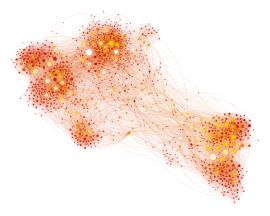
A network contains internal subdivisions called communities. There are methods that permit to highlight these communities, which depend on the comparison of the densities of edges within a group, and from the group

towards the rest of the network (More here) In the right column of "overview" click the page. on Statistics/Modularity/Run to display the modularity window. Choose a resolution (between 0.1 and 2), click OK and close it. The next step takes place in the Partition menu situated in the left column. Select "Nodes" and

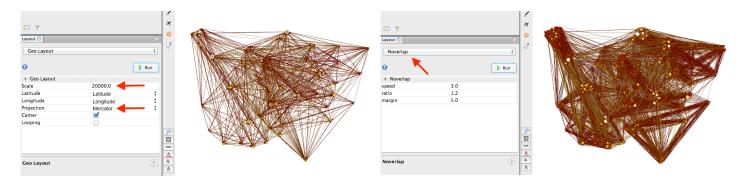
"Modularity Class" (rolling menu). You will be then able to modify the colors attributed to the detected


communities by clicking on them. Do not hesitate to repeat this operation with many "Resolutions" ! If you decide to do so, you must deselect and reselect "Modularity Class" in the left column, and refresh color calculation.

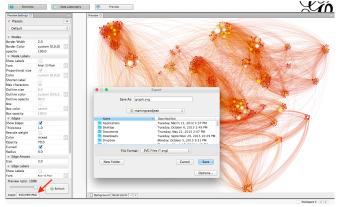
Betweenness centrality


The betweenness centrality measures all the shortest paths between every pairs of nodes of the network and then count how many times a node is on a shortest path between two others. It's a very interesting measure in the case of a network of letters sent and received as it allows the researcher to detect people that occupy an

0 0	Graph Distance settings	Statistics 🖸 Filters			
Distance		Settings			
	stance between all pairs of nodes. Connected nodes have diameter is the longest graph distance between any two	Network Overview			
	(i.e. How far apart are the two most distant nodes).	Average Degree	Run	۲	
		Avg. Weighted Degree 25.486	Run	0	
 Directed 	Normalize Centralities in [0,1]	Network Diameter	Run	0	
UnDirected		Graph Density	Run	0	
Retweenness Centrality	: Measures how often a node appears on shortest paths	HITS	Run	0	
Jerneemess centrality	between nodes in the network.	Modularity 0.57	Run	0	
Closeness Centrality:	The average distance from a given starting node to all other nodes in the network.	PageRank	Run	۲	
Eccentricity:	The distance from a given starting node to the farthest node	Connected Components	Run	۲	
	from it in the network.	Node Overview			
		Avg. Clustering Coefficient	Run	0	
	Cancel	Eigenvector Centrality	Run	0	
	Cancer	🗉 Edge Overview			

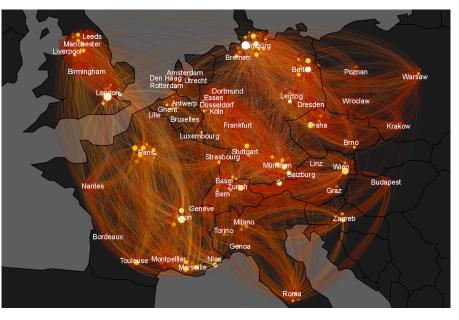

intermediate position between two other people or groups. In the statistics panel, click on "Network Diameter".

Like the Weighted In-Degree before. find а colorful way to highlight nodes that have a high Betweenness centrality. It quickly appear that nodes with high а degree/weighted degree does not always have a high betweenness.



3.4 Geographical layout

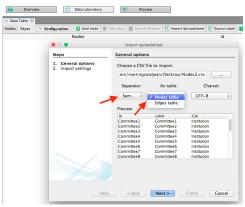
During the import, you've noticed that every node was given a Latitude and a Longitude. The Geo Layout plugin will help you display the nodes in a geographical way. In the Layout panel,


select Geo Layout and give it a scale of 20.000. Be sure that the plugin understand correctly that "Latitude" as a "Latitude" and "Longitude" as a "Longitude" and set the projection to "Mercator" (this projection should be adapted to the map you'll use after). As nodes are now grouped on a geographical coordinate, you'll have to give them some space: use the Noverlap layout plugin to avoid them overlapping (a margin of 5.0 is enough with the chosen map scale).

In the Preview panel, check the final appearance of your artwork and export it in .svg. You'll

then be able to import it on a background map. If you're familiar with Inkscape, download the map provided in the tutorial (created to fit with the chosen scale and Mercator projection). Open it, and after having imported your network in it, select the city names layer and bring it to the front to make it readable.

Feel free to try the same map with modularity, the result shows that communities are strongly related to geographic particularities.

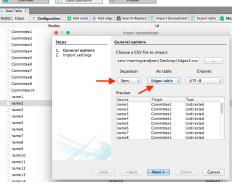


4. PART 2: COMMITTEES AND THEIR MEMBERS

4.1 Importing the data into GEPHI

Create a "new project" in the start window. We'll work on a different type of dataset: a 2-mode network (2 types of nodes, committees and individuals). In the Data Laboratory, click on "Import Spreadsheet" to open the import window and import your first file.

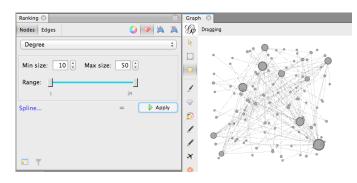
Nodes 2


Specify that the separation between your columns is expressed by a semicolon and do not forget to inform Gephi that the file you import is containing nodes. Then "next" and fill press the settinas form import as proposed. Inform Gephi that our "Cat" variable is а "String" (this variable will

be useful to separate "members" and "committees" in a further step).

Edges 2

Follow the same procedure, but with the "edges" file downloaded before and fill the forms in the following manner: specify the semicolon and inform Gephi that you're importing


mpo	ort settings
Α	ew columns are created with the specified type. generated id is assigned if missing. Iless the option 'Force nodes to be created as new or
Im	ported columns:
	🗹 ld
	String 💠
	🗹 Label
	String 🗘
	Cat
C	String ‡
	Force nodes to be created as new ones
iew	Data Laboratory Preview

the edges. Fill in the last fields and uncheck "create missing nodes", because you've already imported them.

4.2 Two-mode graph visualization

Nodes' size

nported columns	
Source	
String	A T
🗹 Target	
String	* *
🗹 Type	
String	A V

Edges need 'Source' and 'Target' columns with the id o

(here, according to their degree nodes between 10-50). In a 2-mode network, the degree centrality may not be a very interesting value, because of the structural bias brought by the two different categories of nodes: in our case, the "committees" will be naturally much more connected than the "members".

In the Ranking

to

Set a layout

Deploy

network

give

а

your

the

using

panel,

size

Import settings

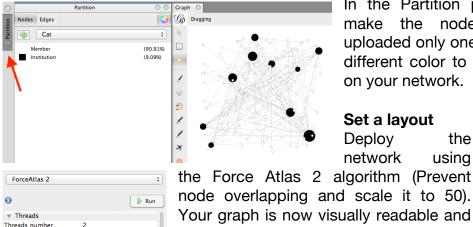
But in this first step, we're just trying to visually distinguish the 2 categories.

Nodes's color

 Behavior Alternatives Dissuade Hubs

Edge Weight Influence Tuning

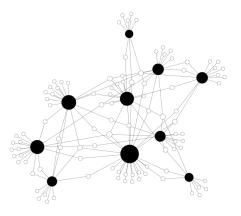
1.0

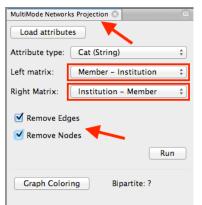

50.0

LinLog mode Prevent Overlap

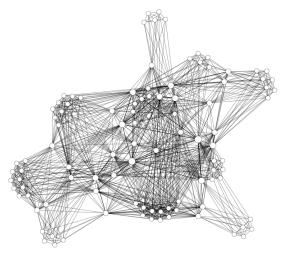
Stronger Gravity

Scaling


Gravity ForceAtlas 2


In the Partition panel, refresh the menu to the nodes' attributes make appear (we uploaded only one attribute: "Cat"). Give a very different color to both categories and apply it on your network.

looks very similar to many organizations networks.

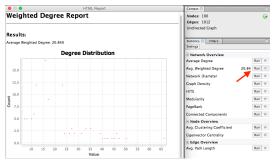

For many researchers, this visualization will be already enough to conduct their analysis. Don't forget to display the nodes' label if needed.

4.3 Projection to one-mode graph

Use the MultiMode Networks Projection Panel (available through the plugin you dowloaded in step 2.2) and "load attributes". You'll now "project" the Institutions

on the Members: if two members have an edge linking them with the same committee, they'll now have a direct edge between them (and the committee will be evacuated).

Select the right attribute type ("Cat"), and set the matrix as proposed here (Member-Institution / Institution-Member): They must be symmetric with the type


of node you want to keep at the beginning and the end.

Check the "Remove Edges" and "Remove Nodes" buttons, in order to clean the graph from the old "Committees" nodes and edges. And finally click on "Run".

Note that you can also project the Members on the Institutions, with the result presented here on the right (edges are getting larger if many members were connected in the same committees).

4.4 Centrality measures and layout

Nodes' size

Calculate the new Degree centrality of the nodes by clicking on "Avg. Weighted Degree" (Statistics panel). In the Ranking Panel, apply this new measure to the nodes, as proposed here. The new degree may be very

different from the degree in the 2-mode original network: a projection add lots of edges (in particular

Then

measure

color the nodes. In

such a network of

people working in

different

use

to

nodes.

this

when lots of nodes where connected to a few very central nodes from the other type).

	egree may be ver	
Ranking 🛞		
Nodes Edges	🕥 🔝 🖄	A
Weighted Degree		÷
Min size: 10 +	Max size: 30 +	
Range:	66.0	
Spline	a D Apply	5

Nodes' color

In the statistics panel, click on "Network Diameter" to calculate the Betweenness centrality of your

Ranking S

Nodes

Edges

Betweenness Centrality

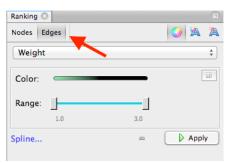
Color:

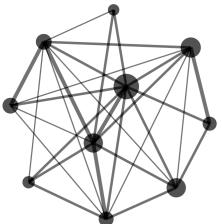
Range:

0.0

474,4358...

Spline...

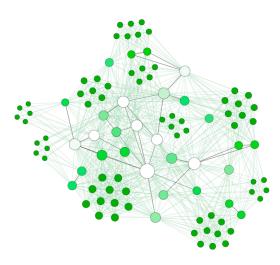

Color:

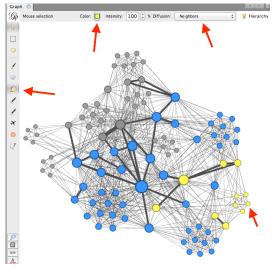

Apply

committees/institutions/companies, knowing who's at the intersection of two groups may be very important for HR officers, i.e..

Edges' color

In order to highlight weighted edges, give them a color that will make the stronger edges more visible in your final display (Suggested here: black for all the edges bigger than 1).



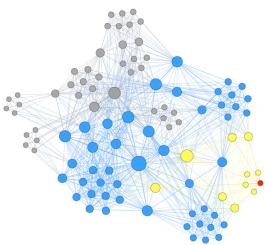

Layout

ForceAtlas 2	÷
0	🛛 🕅 Run
Behavior Alternatives	5
Dissuade Hubs	
LinLog mode	
Prevent Overlap	☑ ◀━━━
Edge Weight Influence	1.0
▼ Tuning	
Scaling	20.0
Stronger Gravity	
Gravity	1.0
 Performance 	
Tolerance (speed)	0.1

Spatialize the graph once again (it kept the positions of the nodes before the projection from 2-mode to 1mode), with Force Atlas 2.

4.5 Neighbors highlighting

This type of network is well suited to a "Linkedin" of analysis: Who's in my network? Who are the people that I will be able to reach through them (what are their own connections)?


Click on the little paint bucket, on the left of the Graph area, and play with the tools on the top of this menu. First paint the "Neighbors of neighbors" (after having given a neutral color to all the nodes), and then the "Neighbors" of a

selected node. In our example, the red node, member of only one

committee, is directly connected to 10 colleagues, which are themselves connected to 49 other individuals.

5. CONCLUSION

Data visualization is a game, let's play! Please help me to improve this tutorial by dropping a comment below the post with remarks, suggestions, links to your own results, etc.!

